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Abstract

In this project, three supervised classification algorithms, namely logistic regression, a random forest clas-
sifier, and support vector machines, were trained on a preexisting data set consisting of various features of
3,000 Toons from the MMORPG Toontown Rewritten with the goal of predicting whether or not Toons
in a previously unseen data set compiled for the purpose of this research had legs which were a different
colour than the rest of their body. Results from a comprehensive study performed on the preexisting data
set were used to inform the current task. None of the algorithms were able to accomplish this objective
with all three models returning low Fi scores. This outcome was likely prompted by the target feature’s
lack of systematicity and the relevance of personal and aesthetic taste to its presence or absence. For these
reasons, future machine learning activity in this specific area may be challenging, although machine learning
analyses are envisioned for various other Toon features which have the potential to be more methodical,

such as interactions of missing and organic Gag tracks.
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1 Introduction

1.1 Background

Machine learning, a rapidly expanding domain within
computer science and artificial intelligence, focuses
on algorithms and systems capable of improving and
learning from experience without explicit instruction.
While certain machine learning algorithms require
parameters to be set, they autonomously build mod-
els and generate output without human direction,
leveraging provided data. Various types of machine
learning algorithms exist, with supervised and unsu-
pervised learning as the two primary categories. Su-
pervised learning builds models using labeled train-
ing data, including both inputs and defined outputs,
while unsupervised learning seeks patterns in unla-
beled inputs. These algorithms are designed for tasks
such as classification, where the model identifies the
category to which an observation belongs, or regres-
sion, where the model predicts a continuous numeric
value. In this study, we address a supervised classi-
fication problem which aims to predict the presence
of a specific feature among a sample of a larger pop-
ulation.

1.2 What is Toontown Rewritten?

Toontown Rewritten was released in 2013 as a
fan-made reincarnation of Toontown Online, an
MMORPG developed and published by Disney which
was in operation from 2003 to 2013. Toontown is
an online game in which the player creates a char-
acter known as a Toon and completes tasks in or-
der to increase their maximum health points, or Laff,
and advance through a series of in-game worlds called
Playgrounds. Toons are highly customizable, and the
player is able to choose from many options for Toon
species, colours, clothing items, name tag styles, and
weapons, known in the Toontown universe as Gags.
There are seven different varieties of Gags, called Gag
tracks, and a Toon can possess six in total. The
player can also opt to grow one of their Gag tracks
in their garden, after which it is referred to as or-
ganic and becomes more powerful, increasing either
in accuracy, damage, or healing capacity.

1.3 Purpose

The purpose of this analysis was to determine to what
degree a supervised classification algorithm could de-
termine whether or not a Toon had been given legs
which are a different colour than the rest of its body,
a trend in the game which has become somewhat as-
sociated with a certain subculture and style. Each
Toon possesses a multitude of characteristics, and
this analysis aims to ascertain which of them, if any,
are relevant to the presence or absence of this target
feature.

1.4 Results

All three classification algorithms implemented to
carry out this analysis performed worse on testing
data than on training data. On previously unseen
testing data, a logistic regression returned an accu-
racy score of 0.839 and F; scores of 0.911 for the
absence of the target feature and 0.191 for its pres-
ence, a random forest classifier returned an accuracy
score of 0.816 and Fj scores of 0.896 and 0.227, and a
support vector machine returned an accuracy score of
0.808 and Fj scores of 0.892 and 0.143. None of the
algorithms were able to demonstrate any meaningful
predictive power for this task.

1.5 Significance

This study highlights the ability of personal choice
and creativity to destabilize apparent systematicity
of variation. Even with strong predictors which had
already been shown to be significantly correlated with
having different legs in previous research, all three
classification algorithms performed poorly, and very
little variation was able to be accounted for by the
models. In contexts where aesthetic preference plays
a significant role in the presence or absence of a fea-
ture, it is difficult to obtain meaningful or useful re-
sults from a systematic machine learning algorithm.



2 Problem definition and algo-
rithms

2.1 The task

The task at hand is to train a supervised machine
learning model to predict whether or not a Toon
has legs which are a different colour than the rest
of its body. This will require a classification algo-
rithm whose inputs consist of a subset of the fea-
tures of the data set, the members of which are to
be determined through exploratory analysis and vi-
sualization, and which outputs a binary value indi-
cating whether or not the Toon possesses different
legs. This is an interesting problem because it is sit-
uated at the intersection of preexisting demonstrated
statistical correlations and creativity and aesthetic
preference. Previous work in the Toontown research
sphere has established that certain features are sig-
nificantly more likely than others to co-occur with
different legs, but are these correlations powerful and
consistent enough for a classification algorithm to use
them to accurately predict the feature in question, or
is its nature too fundamentally grounded in personal
taste for this to be feasible?

2.2 Algorithms

Four algorithms were selected to carry out this task.
K-modes clustering was used to assist in exploratory
analysis and feature engineering, and logistic regres-
sion, random forest classifiers, and support vector
machines were selected as classification algorithms.

The k-modes algorithm is an extension of the k-
means algorithnﬂ which deals with categorical data
through matching dissimilarity measures and the use
of modes instead of means (Huang, 1998). These dis-
similarities are computed by comparing members of
the data set to each other and counting the number
of categorical values which differ between them (Cao
et al., 2011). An instance of the algorithm is cre-
ated and given a constant k£ indicating the number

1K-means clustering, the algorithm from which the k-
modes algorithm is derived, performs the same process as k-
modes except it is designed to cluster numerical and continuous
data and uses means instead of modes (Huang, 1998).

of clusters into which to partition the data set. k
initial modes are selected, one for each cluster, and
each member of the data set is allocated to the clus-
ter whose mode bears the most similarity to its own
feature vectors. The mode of each cluster is contin-
uously recalculated and updated as objects are allo-
cated. Dissimilarities are recalculated after the entire
data set has been categorized into clusters, and ob-
jects are shuffled accordingly. Clustering is complete
when no observation changes clusters when dissimi-
larities are recalculated across the data set (Huang,
1998). K-modes clustering was implemented because
of its potential to illuminate more subtle correlations
between groups of observations, which would not be
evident from visualization alone, through analysis of
clusters displaying a high proportion of the target
feature.

Logistic regression uses a logistic function to model
the behaviour of a categorical dependent variable. It
is often used to predict a binary dependent variable,
but can be extended to handle a dependent variable
with more than two possible values. The logistic
function outputs a probability value between 0 and
1, and whether that predicted value is closer to 0 or
1 determines which level of the dependent variable
is predicted for the observation in question (Joby,
2021).
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Figure 1: The logistic function takes the shape of
a sigmoid curve (Source: Qef, 2014, via Wikimedia
Commons).

A binary logistic regression was selected for this



task because of its simplicity, the nature of the fea-
ture at hand, and the algorithm’s high degree of
interpretability. However, it can overfit on high-
dimensional data sets, which is of particular relevance
for this task given the relatively high number of fea-
tures, and it cannot easily be used to represent com-
plex relationships.

Decision trees are a popular machine learning tool
which partition the feature space into a tree-like
structure, consisting of an initial root node which
splits into various internal nodes, terminating in a
number of final decision nodes. Each of the inter-
nal nodes corresponds to a feature of the data set,
and the node splits into various branches depending
on the possible values of that feature. This process
continues until a terminal node corresponding to a
class of the dependent variable is reached (Sontag,
2012). Decision tree algorithms try to generate an
optimal decision tree for a given data set. A ran-
dom forest classifier generates a large number of dif-
ferent decision trees, repeatedly classifies a given in-
put using these trees, and outputs the value of the
dependent variable selected by the largest number
of trees. Random forests were selected due to their
ability to smoothly handle heterogeneous data and
their reduced tendency to overfit. Complex interac-
tions may exist in a data set possessing this level of
dimensionality, and random forests are able to deal
with this. These positive attributes come at a cost
of interpretability, as visualizing random forests is
much more difficult than visualizing individual de-
cision trees.
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Figure 2: An example of a simple decision tree cre-
ated for a popular data set consisting of information
about passengers on the Titanic (Source: Milborrow,
2011, via Wikimedia Commons).

Support vector machines perform classification
through the creation of one or more hyperplanes
which divide the feature space. The observations
closest to the hyperplane are known as support vec-
tors, and the objective of the algorithm is to maxi-
mize the distance of the hyperplane from these points
(Fletcher, 2008).

Figure 3: An example of the support vector machine
process. The classifier attempts to maximize the dis-
tance between the hyperplane and the points closest
to it (Source: scikit-learn).

The SVM algorithm was chosen for its ability to
scale well to high-dimensional data and its intrin-
sic tendency to generalize by permitting misclassi-
fication, reducing the risk of overfitting. This model
is also difficult to visualize in higher dimensions and
tuning the hyperparameters of the model can be chal-



lenging and time-consuming.

3 Methodology

3.1 Data set

Two separate data sets with identical features were
used in this analysis. The training data consists of
a sample of 3,000 Toons collected from June to Au-
gust 2021, originally compiled for a demographic re-
search and analysis paper which was published in
January 2022, and the test data consists of a sample
of 1,000 Toons collected from January to February
2022 for the purpose of this study. Both data sets
were collected by hand and care was taken to record
observations as randomly as possible and avoid bias.
The data possesses ten features, although colour,
the Toon’s primary colour, and lc, the colour of the
Toon’s legs if it had differently coloured legs, were
not considered in this analysis.

1. laff Toon’s maximum health, nu-
meric

2. species | Toon’s species, categorical,
11 levels

3. gender Toon’s gender, categorical, 2
levels

4. colour Toon’s primary colour, cate-
gorical, not considered in cur-
rent analysis

5. dl Whether or not Toon’s leg
colour differs, binary

6. 1c Colour of Toon’s legs if rele-
vant, categorical, not consid-
ered in current analysis

7. mt Gag track that Toon does not
possess, categorical, 5 levels

8. org Toon’s organic Gag track,
categorical, 8 levels

9. nt Toon’s style of name tag, cat-
egorical, 18 levels

10. f1lippy | Whether or not Toon is wear-
ing a Flippy shirt, binary

3.2 Hypotheses

Various observations from previous analytical work
on the training data set were used to inform the
hypotheses underlying this task. Toons possessing
120 Laff or more, organic Sound, and certain name
tags unlocked later in the game, and missing either
the Toon-up, Lure, or Sound Gag tracks were signif-
icantly more likely to have different legs (Ciereszyn-
ski, 2022). The analysis thus began with the inference
that these features would display predictive power. It
was also hypothesized that even the predictors most
strongly correlated with the target feature could still
perform poorly in a classification task given the role
of personal preference in its presence.

3.3 Preprocessing

The training data set had already been subject to
preprocessing from its use in previous analyses. The
testing data, which was collected specifically for the
purpose of this task, underwent the same preprocess-
ing as the training set. Observations missing infor-
mation were dropped from the data set, as well as
observations possessing identical values for all ten fea-
tures, despite the possibility of multiple Toons pos-
sessing the same characteristics. An eleventh feature
named range consisting of eight Laff point ranges,
beginning at 60, as the lowest Laff value in the data
set is 62, and increasing in increments of 10 to the
maximum Laff value of 139 was also created. This
range feature was also created in the training data
set during its initial preprocessingﬂ Binary feature
vectors, namely gender, d1, and flippy, were en-
coded numerically.

3.4 Evaluation

Two metrics were used to evaluate the performance
of each classifier: the model’s overall accuracy and
the two Fj scores, one for each category of the target
feature. The overall accuracy conveys the fraction of

2It is important to note that since the collection of the
training data, the maximum Laff that a Toon can possess has
increased from 137 to 139. This is why the final bin of range
in Figure 4 possesses the label 130-137.



labels in the test set which were correctly predicted
by the classification model. The F} score is the har-
monic mean of precision and recall. Precision refers
to the proportion of observations identified as mem-
bers of a certain category which truly are members of
that category, while recall refers to the proportion of
members of one category that the classifier is able to
correctly identify. Thus, it is possible to obtain a very
high precision score but a very poor recall score and
vice versa, causing each of these measures to have
little explanatory power when taken independently.
The F score effectively handles this tug of war. It
can be written as follows:

precision - recall

Fy =2 —
precision + recall

The F} score is a comprehensive and informative in-
dicator of multiple aspects of a model’s overall per-
formance.
Both of these metrics were used to judge perfor-
mance, as opposed to solely taking note of overall
accuracy, due to the distribution of the target fea-
ture in the training data set. Only 17.4% (n = 524
of N = 3000) of the observations in the training data
set possess the target feature, and it would therefore
be possible to achieve reasonably high accuracy while
catching only a very small portion of Toons with dif-
ferent legs. F) scores were taken into account to at-
tempt to create a model which recognizes as many
instances of the target feature as possible.
Cross-validation was performed by repeatedly train-
ing and testing new instantiations of each classifier
with different splits of the data set, recording the
overall accuracy and Fj scores of each instantiation,
and subsequently taking the mean of each of these
metrics. For each potential set of predictors, 30 dif-
ferent training and testing splits were created. A new
instantiation of the algorithm was fitted to each train-
ing split, predictions were generated, and accuracy
and F; scores were recorded. The mean of each met-
ric was calculated and used as the overall indicator of
the performance of the set of predictors in question,
and the set with the highest scores was selected for
testing with new data. This selection was not always
a straightforward choice, as will be elaborated upon
later in this paper.
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Figure 4: Laff range across Toons with and without
different legs (Source: author’s own work).

4 Exploratory analysis

4.1 Visualization

Exploratory data visualization was performed to
flesh out and substantiate the preexisting correla-
tions noted in previous work and glean further insight
about the distribution of the target feature. Visual-
ization confirmed the preexisting conclusions. Gen-
der also seemed to be a possible predictor, as male
and female Toons both showed very similar frequen-
cies of the target feature despite the larger population
of female Toons.

4.2 K-modes clustering

K-modes clustering was implemented to explore pos-
sible relationships which could not be displayed via
straightforward visualizations. An ideal number of
clusters into which to segregate the data was deter-
mined with an elbow plot. Figure 7 displays the cost,
or the sum of the dissimilarities between all of the
clusters (Bonthu, 2021), as a function of k from 0
through 50. 40 was selected as the ideal number of
clusters for the data set because cost began to de-
crease only minimally after approximately this value
of k. The increasing computational complexity of
larger values of k£ was deemed not worth the small
decreases in cost. The data set was subsequently di-
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Figure 5: Organic Gag tracks across Toons with and
without different legs (Source: author’s own work).
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Figure 7: Cost as a function of k (Source: author’s
own work).

vided into 40 clusters and clusters displaying a large
amount of the target feature were aggregated into a
separate data set upon which further exploratory vi-
sualization was performed. Clusters were noticeably
black and white in their proportions of different legs,
with either nearly all or nearly none of the members
in a given cluster displaying the feature.

This new data set largely mirrored the characteristics
of the original data set in terms of those of Toons pos-
sessing the target feature. The only takeaway from
further visualization was the large presence of Toons
missing Drop among clusters with primarily different
legs, whereas it had been originally hypothesized on
the basis of previous work that only missing Sound,
Toon-up, or Lure were predictors of the target fea-
ture.

The colour feature was not incorporated into this
analysis. Exploratory analysis demonstrated that no
colour exhibited a disproportionately large amount
of the the target feature, and based on that obser-
vation combined with the feature’s dimensions, as
there are 36 primary colours whose leg colours can
be changeﬂ it seemed judicious to exclude it from
this analysis. A machine learning context is also sim-
ply not how I wish to address a potential relationship
between colour and d1. Future work is planned for
those features, but not in this sphere.

4.3 Feature engineering

Based on exploratory analysis, four new features
were engineered: orgsound, ab120, uncommonmt, and
highnt. Organic Sound and possessing 120 Laff or
more had already been shown in previous statistical
analysis (Ciereszynski, 2022) to be significantly cor-
related with the presence of the target feature, and
this was confirmed with further visualization. Drop
was added to uncommonmt in addition to its original
levels of Toon-up, Lure, and Sound based on anal-
ysis following k-modes clustering. Figure 8 displays
the distribution of different legs across different name
tags. The highnt feature expands on the initial hy-

3This has changed since this paper was originally published.
It is now possible to change a Toon’s leg colour regardless of its
primary colour. Future work in this area will take this change
into account.
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Figure 8: Name tags across Toons with and without
different legs (Source: author’s own work).

pothesis that the Practical and Fancy name tags were
predictors of the target feature and includes multiple
other name tags which are unlocked later in time,
namely Action, Whimsical, Zany, and Triumphant.

5 Results

5.1 Logistic regression

[flippy, orgsound, highnt] yielded the best results,
returning a mean accuracy score of 0.842 and mean
F scores of 0.911 for the absence of the target feature
and 0.268 for its presence.

5.2 Random forest classifier

Dummy variables were generated for each feature
which was not numeric or binary. [laff, species,
gender, mt, org, nt, f1ippy| performed most impres-
sively, yielding a mean accuracy score of 0.851 and
mean F} scores of 0.916 for the absence of the target
feature and 0.381 for its presence with forests of 200
trees. Random forests outperformed the logistic re-
gression while not making use of engineered features.
The underlying structure of random forests and the

decision trees which comprise them allow them to
more easily handle larger amounts of features, as well
as higher-dimensional features, and they thus may
have been able to make more sense of the original
feature data than the logistic regression.

5.3 Support vector machine

A radial basis function was used as the SVM ker-
nel, or method of transformation of the data to mea-
sure similarity, because of its relative ease of calibra-
tion. A grid search was used to compute two hy-
perparameters for each instantiation: C, which deter-
mines the cost of misclassification, and gamma, which
determines the sphere of influence of single observa-
tions during model training (Yildirim, 2020). Grid-
SearchCV also confirmed that the radial basis func-
tion was the optimal kernel for the task at hand.
[flippy, orgsound, highnt] yielded the highest ac-
curacy and Fj score for predicting the absence of dif-
ferent legs, coming in at 0.840 and 0.910. However,
while [f1ippy, orgsound, ab120] yielded lower values
on these two metrics than the aforementioned set of
predictors, returning 0.837 and 0.908, its F; score for
the presence of different legs is much higher, 0.311
in contrast to the first set’s 0.226. Because of this
discrepancy, the second set of predictors was selected
as the best performing set, as the differences in the
first two metrics between the groups are extremely
small and more instances of the target feature can be
captured with the second model.

5.4 Final results

An instantiation of each algorithm was trained on
the entire training data set with the determined op-
timal predictors as input and subsequently tested on
the entire testing data set. A logistic regression re-
turned an accuracy score of 0.839 and F; scores of
0.911 and 0.191 for the absence and presence of dif-
ferent legs, the random forest classifier returned an
accuracy score of 0.816 and Fj scores of 0.896 and
0.227, and the support vector machine returned an
accuracy score of 0.808 and F; scores of 0.892 and
0.143. All three classifiers yielded similar accuracy
scores and F} scores for the absence of different legs



to those obtained during training by the optimal pre-
dictors, while F; scores for the presence of different
legs are all noticeably lower. No algorithm was able
to effectively predict the presence of the target fea-
ture.

6 Discussion

The final results somewhat mirrored the training out-
comes, with the support vector machine returning
the lowest accuracy and the random forest classifier
returning the highest Fj score for the presence of
different legs. The higher F} score yielded by the
random forest classifier is to be expected given its
underlying structures and its ability to handle high-
dimensional data sets more adeptly than a logistic
regression, which may fall flat when given a complex
relationship to tease apart. The random forest clas-
sifier may return a lower accuracy score but a higher
Fy score for the target feature because it is able to
begin to tease apart complex relationships and thus
correctly select more instances of different legs, but
its efforts sometimes lead it astray, leading to misclas-
sification. On the other hand, the logistic regression
cannot handle this level of complexity, which works
in its favour in terms of accuracy because of the fre-
quency of different legs in the data sets, which will
be further discussed later in this section.

The hypothesis defined prior to executing this task,
which was that various features having previously
demonstrated correlations with the target feature
would wield predictive power in this task, but could
still perform poorly due to the inherent role of per-
sonal and aesthetic choice in the presence of differ-
ent legs, were correct. ab120, orgsound, and highnt
were all engineered as features and were selected as
some of the most promising predictors for logistic re-
gression and support vector machines, yet these algo-
rithms performed quite poorly in correctly identifying
observations with different legs. Even the strongest
predictors captured only a very small amount of vari-
ation.

A situation which must be acknowledged in the con-
text of the random forest classifier is the increase in
maximum possible Laff points from 137 to 139 dur-

ing the period between the collection of the training
and testing data sets. The random forest classifier
thus did not encounter observations with values of
laff which were greater than 137 during training,
but did encounter them during testing. This was not
relevant for the logistic regression or support vector
machine, as neither model dealt with individual val-
ues of laff, but rather with ranges, and the new
values of laff both fell into the final bin of the en-
gineered range variable. Despite the introduction of
these two previously unseen values of laff, the ran-
dom forest classifier returned the highest F; score for
the presence of the target feature. This is most likely
due to the fact that the two previously unseen values
are very small increases from values with which the
classifier was already very familiar, and the algorithm
was able to make inferences regarding these observa-
tions based on its prior knowledge about members of
the training set which had close to this amount of
Laff.

Also at play here is the distribution of different legs in
the training and testing data sets. Only 17.4% (n =
524, N = 3000) of the training data set and 16.5% (n
= 165, N = 1000) of the training data set possesses
different legs. Because of this distribution, it is possi-
ble for a classifier to miss the vast majority of relevant
observations and still perform reasonably well. How-
ever, even in light of this situation, all three classifiers
still detected a very small amount of instances of the
target feature.

The majority of the variation in this task is inherently
unexplainable due to the nature of the feature. Al-
though there are various Toon characteristics which
tend to co-occur with having different legs at a statis-
tically significant rate, this is not a systematic feature
produced by any sort of underlying process. Personal
choice and aesthetic preference bring about the ma-
jority of the variation that is observed here, and this
sort of variation most likely cannot be untangled by
a machine learning algorithm.

7 Future work

My interest in Toontown Rewritten-related machine
learning research remains strong despite the poor
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results of this task. It is in my opinion most judicious
to next tackle an area which arguably is more sys-
tematic, such as combinations of missing and organic
Gag tracks with analysis from the perspective of
specific in-game advantages and disadvantages of
these combinations.

As mentioned, a machine learning context is not
how I envision the exploration of the interaction of
colour and leg colour among Toons with different
legs taking place. A correlation analysis may be
possible for this area, as well as for the analysis of
the interaction between colour and the presence of
different legs. A much larger corpus of Toons with
different legs will be necessary in order to perform
work in these areas.

8 Conclusion

The goal of this task was to train a supervised classi-
fication algorithm to predict whether or not a Toon
had legs which were a different colour than its pri-
mary colour. Unfortunately, none of the three al-
gorithms performed well. A logistic regression and
a random forest classifier generated the best results,
with accuracy scores and Fj scores of 0.839, 0.911,
and 0.191, and 0.816, 0.896, and 0.227, respectively,
where the final two values listed for each algorithm
are F scores for the absence and presence of the tar-
get feature. The primary takeaway from this study
is that there exist kinds of variation which cannot
meaningfully be explained or interpreted in a ma-
chine learning context. For contexts in which there
is no deeper and more systematic algorithm at play
than correlations between bundles of features and in
which much of the observed variation stems from per-
sonal preference, little variation can be dealt with and
predicted by a machine learning model.
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Appendices

A Discussion of technical methods

Both data sets were collected by hand in spreadsheets and converted into .csv files which have been uploaded
along with this paper. Analysis of data was performed using Python. Tidying and manipulation was
conducted using pandas and data visualization was performed with matplotlib and Seaborn. The KModes
module from the kmodes package was used for k-modes clustering. scikit-learn was used to implement logistic
regression, random forest classification, and support vector machines, as well as to implement GridSearchCV
and to access various metrics for model scoring and evaluation.

12



References

Bonthu, H. (2021, June 13). KModes Clustering Algorithm for Categorical Data. Analytics Vidhya. https:
//www.analyticsvidhya.com/blog/2021/06/kmodes-clustering-algorithm-for-categorical-\
data/

Cao, F., Liang, J., Li, D. et al. (2011). A dissimilarity measure for the k-Modes clustering algorithm.
Knowledge-Based Systems, 26, 120-127. https://doi.org/10.1016/j.knosys.2011.07.011

Ciereszynski, E. (2022, January 2). An exploration of Toontown Rewritten demographics.
https://github.com/c-z-c-z/data-analytics/blob/main/Toontown-Rewritten-demographics/
An_exploration_of_Toontown_Rewritten_demographics.pdf

de Vos, N. (2021). kmodes categorical clustering library. https://github.com/nicodv/kmodes

Fletcher, T. (2008, December 23). Support Vector Machines Ezxplained. University College London. https:
//www.csd.uwo.ca/~x1ling/cs860/papers/SVM_Explained.pdf

Huang, Z. (1998). Extensions to the k-means algorithm for clustering large data sets with categorical values.
Data Mining and Knowledge Discovery, 2, 283-304. https://doi.org/10.1023/A:1009769707641

Hunter, J. (2007). Matplotlib: A 2D Graphics Environment. Computing in Science € Engineering, 9(3),
90-95. https://ieeexplore.ieee.org/document/4160265

Joby, A. (2021, July 29). What Is Logistic Regression? Learn When to Use It. Learn Hub. https:
//learn.g2.com/logistic-regression

McKinney, W., & others. (2010). Data structures for statistical computing in Python. In Proceedings of
the 9th Python in Science Conference (Vol. 445, pp. 51-56)

Milborrow, Stephen. (2011, March 1). CART tree titanic survivors.png [online image]. Wikimedia Com-
mons. https://commons.wikimedia.org/wiki/File:CART _tree_titanic_survivors.png

Pedregosa, F., Varoquaux, G., Gramfort, A. et al. (2011). Scikit-learn: Machine Learning in Python. Jour-
nal of Machine Learning Research, 12(85), 2825-2830. http://jmlr.org/papers/v12/pedregosalla.
html

Qef. (2014, July 4). Logistic-curve.svg [online image]. Wikimedia Commons. https://commons.
wikimedia.org/wiki/File:Logistic-curve.svg

Sontag, D. (2012). Decision trees, Lecture 11. [Lecture slides]. New York University. https://people.
csail.mit.edu/dsontag/courses/ml12/slides/lecturell.pdf

sphx_glr_plot_separating_hyperplane_001.png [online image]. scikit-learn. https://scikit-learn.org/
stable/modules/svm.html

Toontown Online [Computer software]. (2013). Burbank: The Walt Disney Company.

Toontown Rewritten [Computer software]. (2021). https://www.toontownrewritten.com

Waskom, M. (2021). seaborn: statistical data visualization. Journal of Open Source Software, 6:60, 3021.
https://doi.org/10.21105/joss.03021

Yildirim, S. (2020, May 31). Hyperparameter Tuning for Support Vector Machines — C and
Gamma Parameters. Towards Data Science. https://towardsdatascience.com/hyperparameter)\
-tuning-for-support-vector-machines-c-and-gamma-parameters-6a5097416167

13


https://www.analyticsvidhya.com/blog/2021/06/kmodes-clustering-algorithm-for-categorical-\data/
https://www.analyticsvidhya.com/blog/2021/06/kmodes-clustering-algorithm-for-categorical-\data/
https://www.analyticsvidhya.com/blog/2021/06/kmodes-clustering-algorithm-for-categorical-\data/
https://doi.org/10.1016/j.knosys.2011.07.011
https://github.com/c-z-c-z/data-analytics/blob/main/Toontown-Rewritten-demographics/An_exploration_of_Toontown_Rewritten_demographics.pdf
https://github.com/c-z-c-z/data-analytics/blob/main/Toontown-Rewritten-demographics/An_exploration_of_Toontown_Rewritten_demographics.pdf
https://github.com/nicodv/kmodes
https://www.csd.uwo.ca/~xling/cs860/papers/SVM_Explained.pdf
https://www.csd.uwo.ca/~xling/cs860/papers/SVM_Explained.pdf
https://doi.org/10.1023/A:1009769707641
https://ieeexplore.ieee.org/document/4160265
https://learn.g2.com/logistic-regression
https://learn.g2.com/logistic-regression
https://commons.wikimedia.org/wiki/File:CART_tree_titanic_survivors.png
http://jmlr.org/papers/v12/pedregosa11a.html
http://jmlr.org/papers/v12/pedregosa11a.html
https://commons.wikimedia.org/wiki/File:Logistic-curve.svg
https://commons.wikimedia.org/wiki/File:Logistic-curve.svg
https://people.csail.mit.edu/dsontag/courses/ml12/slides/lecture11.pdf
https://people.csail.mit.edu/dsontag/courses/ml12/slides/lecture11.pdf
https://scikit-learn.org/stable/modules/svm.html
https://scikit-learn.org/stable/modules/svm.html
https://www.toontownrewritten.com
https://doi.org/10.21105/joss.03021
https://towardsdatascience.com/hyperparameter\-tuning-for-support-vector-machines-c-and-gamma-parameters-6a5097416167
https://towardsdatascience.com/hyperparameter\-tuning-for-support-vector-machines-c-and-gamma-parameters-6a5097416167

	Introduction
	Background
	What is Toontown Rewritten?
	Purpose
	Results
	Significance

	Problem definition and algorithms
	The task
	Algorithms

	Methodology
	Data set
	Hypotheses
	Preprocessing
	Evaluation

	Exploratory analysis
	Visualization
	K-modes clustering
	Feature engineering

	Results
	Logistic regression
	Random forest classifier
	Support vector machine
	Final results

	Discussion
	Future work
	Conclusion
	Appendices
	Discussion of technical methods

